bog baseret test «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Sponsorer

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Virksomheders handlinger i relation til personale i den sidste måned (ja / nej)

2) Handlinger af virksomheder i forhold til personale i den sidste måned (faktum i%)

3) Frygt.

4) Største problemer står overfor mit land

5) Hvilke kvaliteter og evner bruger gode ledere, når de bygger succesrige hold?

6) Google. Faktorer, der påvirker teamets effektiv

7) De vigtigste prioriteter for jobsøgende

8) Hvad gør en chef til en stor leder?

9) Hvad gør folk succesrige på arbejdet?

10) Er du klar til at modtage mindre løn for at arbejde eksternt?

11) Eksisterer ageisme?

12) Alderisme i karriere

13) Alderisme i livet

14) Årsager til alder

15) Årsager til, at folk giver op (af Anna Vital)

16) TILLID (#WVS)

17) Oxford Happiness Survey

18) Psykologisk velvære

19) Hvor ville være din næste mest spændende mulighed?

20) Hvad vil du gøre i denne uge for at passe på din mentale sundhed?

21) Jeg lever og tænker på min fortid, nutid eller fremtid

22) Meritokrati

23) Kunstig intelligens og civilisationens afslutning

24) Hvorfor udsætter folk?

25) Kønsforskel i opbygning af selvtillid (IFD Allensbach)

26) Xing.com kulturvurdering

27) Patrick Lencionis "de fem dysfunktioner af et hold"

28) Empati er ...

29) Hvad er vigtigt for IT -specialister i at vælge et jobtilbud?

30) Hvorfor folk modstår forandring (af Siobhán McHale)

31) Hvordan regulerer du dine følelser? (af Nawal Mustafa M.A.)

32) 21 færdigheder, der betaler dig for evigt (af Jeremiah Teo / 赵汉昇)

33) Rigtig frihed er ...

34) 12 måder at opbygge tillid hos andre (af Justin Wright)

35) Karakteristika for en talentfuld medarbejder (af Talent Management Institute)

36) 10 nøgler til at motivere dit team

37) Samvittighedens algebra (af Vladimir Lefebvre)

38) Fremtidens tre distinkte muligheder (af Dr. Clare W. Graves)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Frygt.

Land
Sprog
-
Mail
Beregner igen
Kritisk værdi af korrelationskoefficienten
Normal distribution af William Sealy Gosset (studerende) r = 0.033
Normal distribution af William Sealy Gosset (studerende) r = 0.033
Ikke normal distribution af Spearman r = 0.0013
FordelingIkke
normal
Ikke
normal
Ikke
normal
NormalNormalNormalNormalNormal
Alle spørgsmål
Alle spørgsmål
Min største frygt er
Min største frygt er
Answer 1-
Svag positiv
0.0558
Svag positiv
0.0311
Svag negativ
-0.0169
Svag positiv
0.0917
Svag positiv
0.0304
Svag negativ
-0.0128
Svag negativ
-0.1541
Answer 2-
Svag positiv
0.0229
Svag negativ
-0.0006
Svag negativ
-0.0443
Svag positiv
0.0632
Svag positiv
0.0453
Svag positiv
0.0130
Svag negativ
-0.0942
Answer 3-
Svag negativ
-0.0032
Svag negativ
-0.0122
Svag negativ
-0.0413
Svag negativ
-0.0464
Svag positiv
0.0469
Svag positiv
0.0786
Svag negativ
-0.0196
Answer 4-
Svag positiv
0.0437
Svag positiv
0.0345
Svag negativ
-0.0196
Svag positiv
0.0152
Svag positiv
0.0307
Svag positiv
0.0204
Svag negativ
-0.0981
Answer 5-
Svag positiv
0.0303
Svag positiv
0.1280
Svag positiv
0.0134
Svag positiv
0.0733
Svag negativ
-0.0005
Svag negativ
-0.0203
Svag negativ
-0.1759
Answer 6-
Svag negativ
-0.0003
Svag positiv
0.0082
Svag negativ
-0.0630
Svag negativ
-0.0082
Svag positiv
0.0195
Svag positiv
0.0830
Svag negativ
-0.0315
Answer 7-
Svag positiv
0.0124
Svag positiv
0.0382
Svag negativ
-0.0694
Svag negativ
-0.0241
Svag positiv
0.0473
Svag positiv
0.0641
Svag negativ
-0.0514
Answer 8-
Svag positiv
0.0696
Svag positiv
0.0850
Svag negativ
-0.0333
Svag positiv
0.0150
Svag positiv
0.0346
Svag positiv
0.0134
Svag negativ
-0.1364
Answer 9-
Svag positiv
0.0667
Svag positiv
0.1676
Svag positiv
0.0077
Svag positiv
0.0694
Svag negativ
-0.0128
Svag negativ
-0.0517
Svag negativ
-0.1817
Answer 10-
Svag positiv
0.0780
Svag positiv
0.0754
Svag negativ
-0.0211
Svag positiv
0.0249
Svag positiv
0.0347
Svag negativ
-0.0132
Svag negativ
-0.1303
Answer 11-
Svag positiv
0.0579
Svag positiv
0.0528
Svag negativ
-0.0090
Svag positiv
0.0083
Svag positiv
0.0201
Svag positiv
0.0308
Svag negativ
-0.1198
Answer 12-
Svag positiv
0.0389
Svag positiv
0.1036
Svag negativ
-0.0362
Svag positiv
0.0359
Svag positiv
0.0255
Svag positiv
0.0297
Svag negativ
-0.1521
Answer 13-
Svag positiv
0.0645
Svag positiv
0.1041
Svag negativ
-0.0438
Svag positiv
0.0262
Svag positiv
0.0423
Svag positiv
0.0174
Svag negativ
-0.1603
Answer 14-
Svag positiv
0.0710
Svag positiv
0.1022
Svag negativ
-0.0015
Svag negativ
-0.0085
Svag negativ
-0.0006
Svag positiv
0.0087
Svag negativ
-0.1169
Answer 15-
Svag positiv
0.0555
Svag positiv
0.1365
Svag negativ
-0.0429
Svag positiv
0.0179
Svag negativ
-0.0158
Svag positiv
0.0223
Svag negativ
-0.1178
Answer 16-
Svag positiv
0.0591
Svag positiv
0.0271
Svag negativ
-0.0384
Svag negativ
-0.0401
Svag positiv
0.0655
Svag positiv
0.0283
Svag negativ
-0.0709


Eksport til MS Excel
Denne funktionalitet vil være tilgængelig i dine egne VUCA-afstemninger
Okay

You can not only just create your poll in the Tarif «V.U.C.A meningsmåling designer» (with a unique link and your logo) but also you can earn money by selling its results in the Tarif «Poll Shop», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Tarif «Min SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Produktejer SaaS Pet Project SDTest®

Valerii blev kvalificeret som social pædagoge-psykolog i 1993 og har siden anvendt sin viden inden for projektledelse.
Valerii opnåede en kandidatgrad og projekt- og programlederkvalifikationen i 2013. Under sin kandidatuddannelse blev han fortrolig med Project Roadmap (GPM Deutsche Gesellschaft für Projektmanagement E. V.) og spiraldynamik.
Valerii tog forskellige spiraldynamikforsøg og brugte sin viden og erfaring til at tilpasse den aktuelle version af SDTest.
Valerii er forfatteren af ​​at udforske usikkerheden i V.U.C.A. Koncept ved hjælp af spiraldynamik og matematisk statistik inden for psykologi, mere end 20 internationale afstemninger.
Dette indlæg har 0 Kommentarer
Svar til
Annuller et svar
Efterlad din kommentar
×
Du finder en fejl
FORESLÅR DIN korrekte version
Indtast din e-mail som ønsket
Sende
Afbestille
Bot
sdtest
1
Hej! Lad mig spørge dig, kender du allerede spiraldynamikken?