पुस्तक आधारित परीक्षण «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
प्रायोजकहरू

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) गत महिनामा कर्मचारीहरूको सम्बन्धमा कम्पनीहरूको कार्यहरू (हो / होईन)

2) गत महिना मा कर्मचारीहरु को सम्बन्ध मा कम्पनीहरु को काम (तथ्यहरु मा)

3) सत्कार

4) सबैभन्दा ठूलो समस्याहरू मेरो देशको सामना गर्दै

5) सफल नेताहरू निर्माण गर्दा राम्रा नेताहरू र क्षमताले राम्रो नेताहरू प्रयोग गर्छन्?

6) गूगल। कारकहरू जसले टोलीलाई प्रभाव पार्छ

7) रोजगार खोज्नेहरूको मुख्य प्राथमिकताहरू

8) के मालिक एक महान नेता बनाउँछ?

9) कुन कुराले मानिसहरूलाई काममा सफल बनाउँछ?

10) के तपाईं टाढाको काम गर्न कम तलब प्राप्त गर्न तयार हुनुहुन्छ?

11) के उमेरको अस्तित्वमा छ?

12) क्यारियरमा उमेर

13) जीवनको उमेर

14) उमेर को कारणहरु

15) कारणहरू किन प्रस्तुत गर्छन् (अन्ना महत्वपूर्ण द्वारा)

16) विश्वास (#WVS)

17) अक्सफोर्ड खुशी सर्वेक्षण

18) मनोवैज्ञानिक राम्रो

19) तपाईको अर्को सबैभन्दा रमाईलो अवसर कहाँ हुने थियो?

20) तपाईको मानसिक स्वास्थ्यको हेरचाह गर्न तपाई यस हप्ता के गर्नुहुन्छ?

21) म मेरो विगतको, वर्तमान वा भविष्यको बारेमा सोच्छु

22) मेरिकुट्रक्टर

23) कृत्रिम बुद्धिमत्ता र सभ्यताको अन्त्य

24) मानिसहरू किन ढिलाइ गर्छन्?

25) आत्मविश्वास निर्माणको आधारमा लि gender ्ग भिन्नता (ifd alletsbooch)

26) Xing.com संस्कृति मूल्यांकन

27) प्याट्रिक लेन्नीको "टोलीको पाँच dysfuntions"

28) सहानुभूति भनेको हो ...

29) रोजगार प्रस्ताव छनौट गर्न को लागी विशेषज्ञहरु को लागी के आवश्यक छ?

30) किन मानिसहरूले परिवर्तनहरू प्रतिरोध (siobhán mchale द्वारा)

31) तपाइँ कसरी आफ्ना भावनाहरू नियमित गर्नुहुन्छ? (नवल araga m.a.a.) द्वारा

32) 21 कौशल जसले तपाईंलाई सँधै भुक्तानी गर्दछ (यिर्सिया आओ / 赵汉昇) द्वारा

33) वास्तविक स्वतन्त्रता हो ...

34) अरूसँग विश्वास निर्माण गर्ने 12 तरिकाहरू (जस्टिन राइटले)

35) प्रतिभाशाली कर्मचारी (प्रतिभा व्यवस्थापन संस्थान द्वारा) को विशेषताहरु

36) 10 कुञ्जीले तपाईंको टीमलाई प्रेरणा दिन

37) विवेकको बीजगणित (भ्लादिमिर लेफेब्रे द्वारा)

38) भविष्यका तीन भिन्न सम्भावनाहरू (डा. क्लेयर डब्ल्यू. ग्रेभ्स द्वारा)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

सत्कार

देश
भाषा
-
Mail
पुन: स्थापना
सहसंबंध गुणांकको आलोचनात्मक मूल्य
सामान्य वितरण, विलियम समुद्री पाउडसेट द्वारा (विद्यार्थी) r = 0.033
सामान्य वितरण, विलियम समुद्री पाउडसेट द्वारा (विद्यार्थी) r = 0.033
भायरम्यान द्वारा गैर सामान्य वितरण r = 0.0013
वितरणगैर
सामान्य
गैर
सामान्य
गैर
सामान्य
साधारणसाधारणसाधारणसाधारणसाधारण
सबै प्रश्नहरू
सबै प्रश्नहरू
मेरो सबैभन्दा ठूलो डर हो
मेरो सबैभन्दा ठूलो डर हो
Answer 1-
कमजोर सकारात्मक
0.0569
कमजोर सकारात्मक
0.0313
कमजोर नकरात्मक
-0.0161
कमजोर सकारात्मक
0.0906
कमजोर सकारात्मक
0.0297
कमजोर नकरात्मक
-0.0118
कमजोर नकरात्मक
-0.1544
Answer 2-
कमजोर सकारात्मक
0.0225
कमजोर सकारात्मक
0.0002
कमजोर नकरात्मक
-0.0450
कमजोर सकारात्मक
0.0644
कमजोर सकारात्मक
0.0442
कमजोर सकारात्मक
0.0128
कमजोर नकरात्मक
-0.0940
Answer 3-
कमजोर नकरात्मक
-0.0030
कमजोर नकरात्मक
-0.0116
कमजोर नकरात्मक
-0.0411
कमजोर नकरात्मक
-0.0465
कमजोर सकारात्मक
0.0466
कमजोर सकारात्मक
0.0786
कमजोर नकरात्मक
-0.0200
Answer 4-
कमजोर सकारात्मक
0.0440
कमजोर सकारात्मक
0.0354
कमजोर नकरात्मक
-0.0189
कमजोर सकारात्मक
0.0150
कमजोर सकारात्मक
0.0299
कमजोर सकारात्मक
0.0204
कमजोर नकरात्मक
-0.0986
Answer 5-
कमजोर सकारात्मक
0.0309
कमजोर सकारात्मक
0.1278
कमजोर सकारात्मक
0.0137
कमजोर सकारात्मक
0.0728
कमजोर नकरात्मक
-0.0011
कमजोर नकरात्मक
-0.0195
कमजोर नकरात्मक
-0.1757
Answer 6-
कमजोर नकरात्मक
-0.0001
कमजोर सकारात्मक
0.0086
कमजोर नकरात्मक
-0.0623
कमजोर नकरात्मक
-0.0085
कमजोर सकारात्मक
0.0193
कमजोर सकारात्मक
0.0829
कमजोर नकरात्मक
-0.0319
Answer 7-
कमजोर सकारात्मक
0.0127
कमजोर सकारात्मक
0.0385
कमजोर नकरात्मक
-0.0683
कमजोर नकरात्मक
-0.0246
कमजोर सकारात्मक
0.0468
कमजोर सकारात्मक
0.0640
कमजोर नकरात्मक
-0.0519
Answer 8-
कमजोर सकारात्मक
0.0700
कमजोर सकारात्मक
0.0853
कमजोर नकरात्मक
-0.0322
कमजोर सकारात्मक
0.0146
कमजोर सकारात्मक
0.0344
कमजोर सकारात्मक
0.0132
कमजोर नकरात्मक
-0.1370
Answer 9-
कमजोर सकारात्मक
0.0670
कमजोर सकारात्मक
0.1680
कमजोर सकारात्मक
0.0087
कमजोर सकारात्मक
0.0692
कमजोर नकरात्मक
-0.0132
कमजोर नकरात्मक
-0.0518
कमजोर नकरात्मक
-0.1822
Answer 10-
कमजोर सकारात्मक
0.0784
कमजोर सकारात्मक
0.0758
कमजोर नकरात्मक
-0.0199
कमजोर सकारात्मक
0.0245
कमजोर सकारात्मक
0.0342
कमजोर नकरात्मक
-0.0133
कमजोर नकरात्मक
-0.1308
Answer 11-
कमजोर सकारात्मक
0.0586
कमजोर सकारात्मक
0.0528
कमजोर नकरात्मक
-0.0091
कमजोर सकारात्मक
0.0074
कमजोर सकारात्मक
0.0198
कमजोर सकारात्मक
0.0318
कमजोर नकरात्मक
-0.1198
Answer 12-
कमजोर सकारात्मक
0.0392
कमजोर सकारात्मक
0.1042
कमजोर नकरात्मक
-0.0353
कमजोर सकारात्मक
0.0357
कमजोर सकारात्मक
0.0249
कमजोर सकारात्मक
0.0297
कमजोर नकरात्मक
-0.1526
Answer 13-
कमजोर सकारात्मक
0.0646
कमजोर सकारात्मक
0.1052
कमजोर नकरात्मक
-0.0444
कमजोर सकारात्मक
0.0266
कमजोर सकारात्मक
0.0416
कमजोर सकारात्मक
0.0176
कमजोर नकरात्मक
-0.1605
Answer 14-
कमजोर सकारात्मक
0.0714
कमजोर सकारात्मक
0.1026
कमजोर नकरात्मक
-0.0002
कमजोर नकरात्मक
-0.0090
कमजोर नकरात्मक
-0.0012
कमजोर सकारात्मक
0.0086
कमजोर नकरात्मक
-0.1174
Answer 15-
कमजोर सकारात्मक
0.0558
कमजोर सकारात्मक
0.1369
कमजोर नकरात्मक
-0.0419
कमजोर सकारात्मक
0.0176
कमजोर नकरात्मक
-0.0163
कमजोर सकारात्मक
0.0222
कमजोर नकरात्मक
-0.1183
Answer 16-
कमजोर सकारात्मक
0.0592
कमजोर सकारात्मक
0.0275
कमजोर नकरात्मक
-0.0384
कमजोर नकरात्मक
-0.0402
कमजोर सकारात्मक
0.0652
कमजोर सकारात्मक
0.0283
कमजोर नकरात्मक
-0.0710


एमएस एक्सेल मा निर्यात
यो कार्यक्षमता तपाईंको आफ्नै VUCA पोलहरूमा उपलब्ध हुनेछ
ठिक छ

You can not only just create your poll in the महसुल «V.U.C.A पोल डिजाइनर» (with a unique link and your logo) but also you can earn money by selling its results in the महसुल «फीड पसल», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing महसुल «मेरो SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
भ्यालेरी नानिको
उत्पाद मालिकको सबसाल प्रोजेक्ट sdtest®

1 199 199. मा वैदेशिक ट्रेसागोग्युयोगी-मनोविज्ञानीको रूपमा भ्यालेरीइलिएकी छन र परियोजना व्यवस्थापनमा उनको ज्ञान लागू भएको छ।
201 2013 मा भ्यालेरीले मास्टर डिग्री र प्रोग्राम प्रबन्धक योग्यता प्राप्त गर्यो। उसको मालिकको कार्यक्रमको बेला उनी प्रोजेक्ट रोडस्च जईटेकमटमेनेज इडेकरफेन्टेन्सेन्क्स ई।)।
भ्यालेरीले विभिन्न सर्पिल गतिरोध परीक्षणहरू लगे र समग्रको हालको संस्करण अनुकूलन गर्न उसको ज्ञान र अनुभव प्रयोग गर्यो।
भ्यालेरीलाई V.U.C.A को अनिश्चितता खोज्ने लेखक हो। सर्पिल गतिशीलता र गणितीय तथ्या .्कको प्रयोग गर्दै 20 विज्ञान विज्ञान, 20 भन्दा बढी अन्तर्राष्ट्रिय चुनावहरू।
यो पोष्ट छ 0 गिर्जाभ्कारछन्
जवाफ दिनु
जवाफ दिनुहोस्
आफ्नो टिप्पणी छोड्नुहोस्
×
के तपाईं त्रुटि भेट्टाउन
आफ्नो सही संस्करण प्रस्ताव
इच्छित रूपमा आफ्नो ई-मेल प्रविष्ट गर्नुहोस्
send
रद्द
Bot
sdtest
1
नमस्कार! मलाई सोध्नुहोस्, के तपाईं पहिले नै सर्पिल गतिशीलतासँग परिचित हुनुभयो?