boken baserat test «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Sponsorer

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Åtgärder från företag i relation till personal under den senaste månaden (ja / nej)

2) Aktiviteter för företag i förhållande till personal under den senaste månaden (fakta i%)

3) Rädsla

4) Största problem som mitt land står inför

5) Vilka egenskaper och förmågor använder bra ledare när de bygger framgångsrika team?

6) Google. Faktorer som påverkar teameffektiviteten

7) De viktigaste prioriteringarna för arbetssökande

8) Vad gör en chef till en stor ledare?

9) Vad gör människor framgångsrika på jobbet?

10) Är du redo att få mindre lön för att arbeta på distans?

11) Finns ageism?

12) Ageism i karriären

13) Ageism i livet

14) Causes of Ageism

15) Anledningar till att människor ger upp (av Anna Vital)

16) FÖRTROENDE (#WVS)

17) Oxford Happiness Survey

18) Psykologiskt välmående

19) Var skulle vara din nästa mest spännande möjlighet?

20) Vad ska du göra den här veckan för att ta hand om din mentala hälsa?

21) Jag lever och tänker på mitt förflutna, nutid eller framtid

22) Meritokrati

23) Konstgjord intelligens och slutet på civilisationen

24) Varför skjuter människor?

25) Könsskillnad i att bygga självförtroende (IFD Allensbach)

26) Xing.com kulturbedömning

27) Patrick Lencionis "The Five Dysfunctions of a Team"

28) Empati är ...

29) Vad är viktigt för IT -specialisterna för att välja ett jobberbjudande?

30) Varför människor motstår förändring (av Siobhán McHale)

31) Hur reglerar du dina känslor? (av Nawal Mustafa M.A.)

32) 21 färdigheter som betalar dig för alltid (av Jeremiah Teo / 赵汉昇)

33) Verklig frihet är ...

34) 12 sätt att bygga förtroende med andra (av Justin Wright)

35) Egenskaper hos en begåvad anställd (av Talent Management Institute)

36) 10 nycklar för att motivera ditt team

37) Samvetets algebra (av Vladimir Lefebvre)

38) Framtidens tre distinkta möjligheter (av Dr. Clare W. Graves)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Rädsla

Land
Språk
-
Mail
Beräkna
Kritiska värdet av korrelationskoefficienten
Normal Distribution, av William Sealy Gosset (Student) r = 0.033
Normal Distribution, av William Sealy Gosset (Student) r = 0.033
Icke normal distribution, av Spearman r = 0.0013
DistributionIcke
normal
Icke
normal
Icke
normal
VanligtVanligtVanligtVanligtVanligt
Alla frågor
Alla frågor
Min största rädsla är
Min största rädsla är
Answer 1-
Svagt positivt
0.0569
Svagt positivt
0.0313
Svagt negativt
-0.0161
Svagt positivt
0.0906
Svagt positivt
0.0297
Svagt negativt
-0.0118
Svagt negativt
-0.1544
Answer 2-
Svagt positivt
0.0225
Svagt positivt
0.0002
Svagt negativt
-0.0450
Svagt positivt
0.0644
Svagt positivt
0.0442
Svagt positivt
0.0128
Svagt negativt
-0.0940
Answer 3-
Svagt negativt
-0.0030
Svagt negativt
-0.0116
Svagt negativt
-0.0411
Svagt negativt
-0.0465
Svagt positivt
0.0466
Svagt positivt
0.0786
Svagt negativt
-0.0200
Answer 4-
Svagt positivt
0.0440
Svagt positivt
0.0354
Svagt negativt
-0.0189
Svagt positivt
0.0150
Svagt positivt
0.0299
Svagt positivt
0.0204
Svagt negativt
-0.0986
Answer 5-
Svagt positivt
0.0309
Svagt positivt
0.1278
Svagt positivt
0.0137
Svagt positivt
0.0728
Svagt negativt
-0.0011
Svagt negativt
-0.0195
Svagt negativt
-0.1757
Answer 6-
Svagt negativt
-0.0001
Svagt positivt
0.0086
Svagt negativt
-0.0623
Svagt negativt
-0.0085
Svagt positivt
0.0193
Svagt positivt
0.0829
Svagt negativt
-0.0319
Answer 7-
Svagt positivt
0.0127
Svagt positivt
0.0385
Svagt negativt
-0.0683
Svagt negativt
-0.0246
Svagt positivt
0.0468
Svagt positivt
0.0640
Svagt negativt
-0.0519
Answer 8-
Svagt positivt
0.0700
Svagt positivt
0.0853
Svagt negativt
-0.0322
Svagt positivt
0.0146
Svagt positivt
0.0344
Svagt positivt
0.0132
Svagt negativt
-0.1370
Answer 9-
Svagt positivt
0.0670
Svagt positivt
0.1680
Svagt positivt
0.0087
Svagt positivt
0.0692
Svagt negativt
-0.0132
Svagt negativt
-0.0518
Svagt negativt
-0.1822
Answer 10-
Svagt positivt
0.0784
Svagt positivt
0.0758
Svagt negativt
-0.0199
Svagt positivt
0.0245
Svagt positivt
0.0342
Svagt negativt
-0.0133
Svagt negativt
-0.1308
Answer 11-
Svagt positivt
0.0586
Svagt positivt
0.0528
Svagt negativt
-0.0091
Svagt positivt
0.0074
Svagt positivt
0.0198
Svagt positivt
0.0318
Svagt negativt
-0.1198
Answer 12-
Svagt positivt
0.0392
Svagt positivt
0.1042
Svagt negativt
-0.0353
Svagt positivt
0.0357
Svagt positivt
0.0249
Svagt positivt
0.0297
Svagt negativt
-0.1526
Answer 13-
Svagt positivt
0.0646
Svagt positivt
0.1052
Svagt negativt
-0.0444
Svagt positivt
0.0266
Svagt positivt
0.0416
Svagt positivt
0.0176
Svagt negativt
-0.1605
Answer 14-
Svagt positivt
0.0714
Svagt positivt
0.1026
Svagt negativt
-0.0002
Svagt negativt
-0.0090
Svagt negativt
-0.0012
Svagt positivt
0.0086
Svagt negativt
-0.1174
Answer 15-
Svagt positivt
0.0558
Svagt positivt
0.1369
Svagt negativt
-0.0419
Svagt positivt
0.0176
Svagt negativt
-0.0163
Svagt positivt
0.0222
Svagt negativt
-0.1183
Answer 16-
Svagt positivt
0.0592
Svagt positivt
0.0275
Svagt negativt
-0.0384
Svagt negativt
-0.0402
Svagt positivt
0.0652
Svagt positivt
0.0283
Svagt negativt
-0.0710


Export till MS Excel
Denna funktionalitet kommer att finnas tillgänglig i dina egna VUCA-undersökningar
Ok

You can not only just create your poll in the Taxa «V.U.C.A enkät designer» (with a unique link and your logo) but also you can earn money by selling its results in the Taxa «Omröstningsbutik», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Taxa «Min SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Produktägare SaaS Pet Project SDTest®

Valerii var kvalificerad som en social pedagog-psykolog 1993 och har sedan dess tillämpat sin kunskap i projektledning.
Valerii erhöll en magisterexamen och projekt- och programchefskvalificeringen 2013. Under sitt masterprogram blev han bekant med Project Roadmap (GPM Deutsche Gesellschaft für Projektmanagement e. V.) och spiraldynamik.
Valerii tog olika spiraldynamiktester och använde sin kunskap och erfarenhet för att anpassa den aktuella versionen av SDTest.
Valerii är författaren för att utforska osäkerheten i V.U.C.A. Koncept med spiraldynamik och matematisk statistik i psykologi, mer än 20 internationella undersökningar.
Det här inlägget har 0 Kommentarer
Svara till
Avbryt ett svar
Lämna din kommentar
×
Du hittar ett fel
FÖRESLÅR din rätta VERSION
Fyll i din e-post som önskas
Skicka
Annullera
Bot
sdtest
1
Hallå där! Låt mig fråga dig, känner du redan med spiraldynamik?