tástáil bhunaithe leabhair «Spiral
Dynamics: Mastering Values, Leadership,
and Change» (ISBN-13: 978-1405133562)
Urraitheoirí

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Gníomhartha cuideachtaí maidir le pearsanra le mí anuas (tá / níl)

2) Gníomhartha cuideachtaí maidir le pearsanra le mí an mhí dheiridh (fírinne i%)

3) Eagla

4) Na fadhbanna is mó atá os comhair mo thíre

5) Cad iad na cáilíochtaí agus na cumais a úsáideann ceannairí maithe agus foirne rathúla á dtógáil agat?

6) Google. Fachtóirí a mbíonn tionchar acu ar fheabhas foirne

7) Príomhthosaíochtaí lucht cuardaigh poist

8) Cad a dhéanann ceannaire iontach mar cheannaire?

9) Cad a dhéanann daoine ag éirí go maith ag an obair?

10) An bhfuil tú réidh le níos lú pá a fháil chun obair go cianda?

11) An bhfuil aoiseachas ann?

12) Aoiseachas i ngairm

13) Aoiseachas sa saol

14) Cúiseanna le haoiseachas

15) Cúiseanna a thugann daoine suas (de réir Anna REALIAL)

16) Iontaobhas (#WVS)

17) Suirbhé Sonas Oxford

18) Folláine síceolaíoch

19) Cá mbeadh an chéad deis is spreagúla agat?

20) Cad a dhéanfaidh tú an tseachtain seo chun aire a thabhairt do do shláinte mheabhrach?

21) Tá mé i mo chónaí ag smaoineamh ar mo chuid ama, i láthair nó sa todhchaí

22) Fiúntas daonlathas

23) Faisnéis shaorga agus deireadh na sibhialtachta

24) Cén fáth a gcuireann daoine moill ar?

25) Difríocht inscne maidir le féinmhuinín a thógáil (IFD Allensbach)

26) Xing.com Measúnú Cultúir

27) Patrick Lencioni "The Five Dysfunctions of a Team"

28) Is ionbhá ...

29) Cad atá riachtanach do speisialtóirí TF maidir le tairiscint poist a roghnú?

30) Cén fáth a gcuireann daoine in aghaidh an athraithe (le Siobhán McHale)

31) Conas a rialaíonn tú do chuid mothúchán? (le Nawal Mustafa M.A.)

32) 21 scileanna a íocann tú go deo (le Jeremiah Teo / 赵汉昇)

33) Tá fíor -shaoirse ...

34) 12 Bealaí chun muinín a thógáil le daoine eile (le Justin Wright)

35) Saintréithe fostaí cumasach (ag Institiúid Bainistíochta Talent)

36) 10 eochracha chun d’fhoireann a spreagadh

37) Ailgéabar coinsiasa le Vladimir Lefebvre

38) Trí Fhéidearthacht ar Leith sa Todhchaí (leis an Dr. Clare W. Graves)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Eagla

Tír
Teanga
-
Mail
Athchúrsáil
Luach criticiúil an chomhéifeacht comhghaoil
Dáileadh Gnáth, le William Sealy Gosset (Mac Léinn) r = 0.033
Dáileadh Gnáth, le William Sealy Gosset (Mac Léinn) r = 0.033
Dáileadh Neamh -Ghnáth, le Spearman r = 0.0013
ImdháileadhNeamhghnáchNeamhghnáchNeamhghnáchGnáth-Gnáth-Gnáth-Gnáth-Gnáth-
Gach ceist
Gach ceist
Is é an t-eagla is mó atá agam ná
Is é an t-eagla is mó atá agam ná
Answer 1-
Dearfach lag
0.0569
Dearfach lag
0.0313
Diúltach lag
-0.0161
Dearfach lag
0.0906
Dearfach lag
0.0297
Diúltach lag
-0.0118
Diúltach lag
-0.1544
Answer 2-
Dearfach lag
0.0225
Dearfach lag
0.0002
Diúltach lag
-0.0450
Dearfach lag
0.0644
Dearfach lag
0.0442
Dearfach lag
0.0128
Diúltach lag
-0.0940
Answer 3-
Diúltach lag
-0.0030
Diúltach lag
-0.0116
Diúltach lag
-0.0411
Diúltach lag
-0.0465
Dearfach lag
0.0466
Dearfach lag
0.0786
Diúltach lag
-0.0200
Answer 4-
Dearfach lag
0.0440
Dearfach lag
0.0354
Diúltach lag
-0.0189
Dearfach lag
0.0150
Dearfach lag
0.0299
Dearfach lag
0.0204
Diúltach lag
-0.0986
Answer 5-
Dearfach lag
0.0309
Dearfach lag
0.1278
Dearfach lag
0.0137
Dearfach lag
0.0728
Diúltach lag
-0.0011
Diúltach lag
-0.0195
Diúltach lag
-0.1757
Answer 6-
Diúltach lag
-0.0001
Dearfach lag
0.0086
Diúltach lag
-0.0623
Diúltach lag
-0.0085
Dearfach lag
0.0193
Dearfach lag
0.0829
Diúltach lag
-0.0319
Answer 7-
Dearfach lag
0.0127
Dearfach lag
0.0385
Diúltach lag
-0.0683
Diúltach lag
-0.0246
Dearfach lag
0.0468
Dearfach lag
0.0640
Diúltach lag
-0.0519
Answer 8-
Dearfach lag
0.0700
Dearfach lag
0.0853
Diúltach lag
-0.0322
Dearfach lag
0.0146
Dearfach lag
0.0344
Dearfach lag
0.0132
Diúltach lag
-0.1370
Answer 9-
Dearfach lag
0.0670
Dearfach lag
0.1680
Dearfach lag
0.0087
Dearfach lag
0.0692
Diúltach lag
-0.0132
Diúltach lag
-0.0518
Diúltach lag
-0.1822
Answer 10-
Dearfach lag
0.0784
Dearfach lag
0.0758
Diúltach lag
-0.0199
Dearfach lag
0.0245
Dearfach lag
0.0342
Diúltach lag
-0.0133
Diúltach lag
-0.1308
Answer 11-
Dearfach lag
0.0586
Dearfach lag
0.0528
Diúltach lag
-0.0091
Dearfach lag
0.0074
Dearfach lag
0.0198
Dearfach lag
0.0318
Diúltach lag
-0.1198
Answer 12-
Dearfach lag
0.0392
Dearfach lag
0.1042
Diúltach lag
-0.0353
Dearfach lag
0.0357
Dearfach lag
0.0249
Dearfach lag
0.0297
Diúltach lag
-0.1526
Answer 13-
Dearfach lag
0.0646
Dearfach lag
0.1052
Diúltach lag
-0.0444
Dearfach lag
0.0266
Dearfach lag
0.0416
Dearfach lag
0.0176
Diúltach lag
-0.1605
Answer 14-
Dearfach lag
0.0714
Dearfach lag
0.1026
Diúltach lag
-0.0002
Diúltach lag
-0.0090
Diúltach lag
-0.0012
Dearfach lag
0.0086
Diúltach lag
-0.1174
Answer 15-
Dearfach lag
0.0558
Dearfach lag
0.1369
Diúltach lag
-0.0419
Dearfach lag
0.0176
Diúltach lag
-0.0163
Dearfach lag
0.0222
Diúltach lag
-0.1183
Answer 16-
Dearfach lag
0.0592
Dearfach lag
0.0275
Diúltach lag
-0.0384
Diúltach lag
-0.0402
Dearfach lag
0.0652
Dearfach lag
0.0283
Diúltach lag
-0.0710


Easpórtáil go MS Excel
Beidh an fheidhmiúlacht seo ar fáil i do vótaíochtaí VUCA féin
Go maith

You can not only just create your poll in the Taraife «V.U.C.A dearthóir vótaíocht» (with a unique link and your logo) but also you can earn money by selling its results in the Taraife «Siopa vótaíochta», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Taraife «Mo SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Úinéir an Táirge SaaS Pet Project Sdtest®

Bhí Valerii cáilithe mar shíceolaí oideolaíoch sóisialta i 1993 agus ó shin i leith chuir sé a chuid eolais i bhfeidhm i mbainistíocht tionscadail.
Fuair ​​Valerii céim mháistreachta agus cáilíocht an tionscadail agus an bhainisteora cláir in 2013. Le linn a chláir mháistir, bhí sé eolach ar threochlár Project (GPM Deutsche Gesellschaft Für Projektmanagement e. V.) agus dinimic Spiral.
Ghlac Valerii tástálacha éagsúla dinimic bíseach agus d'úsáid sé a chuid eolais agus taithí chun an leagan reatha de SDTest a oiriúnú.
Is é Valerii údar iniúchadh a dhéanamh ar neamhchinnteacht an V.U.C.A. Coincheap ag baint úsáide as dinimic bíseach agus staitisticí matamaiticiúla i síceolaíocht, níos mó ná 20 vótaíocht idirnáisiúnta.
Tá an post seo 0 Deir
Freagra ar
Cealaigh freagra
Fág do thrácht
×
LEAT AN ERROR
Mholadh DO LEAGAN CEART
Cuir isteach do sheoladh r-phoist mar atá ag teastáil
Seol
Cealaigh
Bot
sdtest
1
Dia Duit! Lig dom ceist a chur ort, an bhfuil tú eolach cheana féin ar dhinimic bíseach?