test založený book «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Sponzori

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Akcie spoločností vo vzťahu k personálu za posledný mesiac (áno / nie)

2) Akcie spoločností vo vzťahu k personálu v poslednom mesiaci (fakt v%)

3) Obávať

4) Najväčšie problémy, ktorým čelí moja krajina

5) Aké vlastnosti a schopnosti používajú dobrí vodcovia pri budovaní úspešných tímov?

6) Google. Faktory, ktoré ovplyvňujú efektívnosť tímu

7) Hlavné priority uchádzačov o zamestnanie

8) Čo robí šéfa skvelým vodcom?

9) Čo robí ľudí úspešnými v práci?

10) Ste pripravení na diaľku dostávať menej mzdy za prácu?

11) Existuje ageizmus?

12) Ageizmus v kariére

13) Ageizmus v živote

14) Príčiny ageizmu

15) Dôvody, prečo sa ľudia vzdávajú (Anna Vital)

16) Dôverovať (#WVS)

17) Prieskum o šťastí v Oxforde

18) Psychologický blahobyt

19) Kde by bola vaša ďalšia najzaujímavejšia príležitosť?

20) Čo urobíte tento týždeň, aby ste sa starali o svoje duševné zdravie?

21) Žijem premýšľam o svojej minulosti, prítomnosti alebo budúcnosti

22) Meritokracia

23) Umelá inteligencia a koniec civilizácie

24) Prečo ľudia odkladajú?

25) Rodové rozdiely v budovaní sebavedomia (IFD Allensbach)

26) Xing.com Hodnotenie kultúry

27) „Päť dysfunkcií tímu Patricka Lencioniho“

28) Empatia je ...

29) Čo je nevyhnutné pre IT špecialistov pri výbere ponuky práce?

30) Prečo ľudia odolávajú zmenám (od Siobhán McHale)

31) Ako regulujete svoje emócie? (Autor: Nawal Mustafa M.A.)

32) 21 zručností, ktoré vám platia navždy (od Jeremiáša Teo / 赵汉昇)

33) Skutočná sloboda je ...

34) 12 spôsobov, ako vybudovať dôveru s ostatnými (Justin Wright)

35) Charakteristiky talentovaného zamestnanca (Inštitút riadenia talentov)

36) 10 kľúčov k motivácii vášho tímu

37) Algebra svedomia (Vladimír Lefebvre)

38) Tri odlišné možnosti budúcnosti (Dr. Clare W. Graves)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Obávať

Krajina
Jazyk
-
Mail
Rozvíjať sa
Kritická hodnota korelačného koeficientu
Normálne rozdelenie, od Williama Sealyho Gosset (študent) r = 0.033
Normálne rozdelenie, od Williama Sealyho Gosset (študent) r = 0.033
Normálne rozdelenie, Spearman r = 0.0013
DistribúciaNekonečnýNekonečnýNekonečnýNormálnyNormálnyNormálnyNormálnyNormálny
Všetky otázky
Všetky otázky
Môj najväčší strach je
Môj najväčší strach je
Answer 1-
Slabo pozitívne
0.0558
Slabo pozitívne
0.0311
Slabý negatívny
-0.0169
Slabo pozitívne
0.0917
Slabo pozitívne
0.0304
Slabý negatívny
-0.0128
Slabý negatívny
-0.1541
Answer 2-
Slabo pozitívne
0.0229
Slabý negatívny
-0.0006
Slabý negatívny
-0.0443
Slabo pozitívne
0.0632
Slabo pozitívne
0.0453
Slabo pozitívne
0.0130
Slabý negatívny
-0.0942
Answer 3-
Slabý negatívny
-0.0032
Slabý negatívny
-0.0122
Slabý negatívny
-0.0413
Slabý negatívny
-0.0464
Slabo pozitívne
0.0469
Slabo pozitívne
0.0786
Slabý negatívny
-0.0196
Answer 4-
Slabo pozitívne
0.0437
Slabo pozitívne
0.0345
Slabý negatívny
-0.0196
Slabo pozitívne
0.0152
Slabo pozitívne
0.0307
Slabo pozitívne
0.0204
Slabý negatívny
-0.0981
Answer 5-
Slabo pozitívne
0.0303
Slabo pozitívne
0.1280
Slabo pozitívne
0.0134
Slabo pozitívne
0.0733
Slabý negatívny
-0.0005
Slabý negatívny
-0.0203
Slabý negatívny
-0.1759
Answer 6-
Slabý negatívny
-0.0003
Slabo pozitívne
0.0082
Slabý negatívny
-0.0630
Slabý negatívny
-0.0082
Slabo pozitívne
0.0195
Slabo pozitívne
0.0830
Slabý negatívny
-0.0315
Answer 7-
Slabo pozitívne
0.0124
Slabo pozitívne
0.0382
Slabý negatívny
-0.0694
Slabý negatívny
-0.0241
Slabo pozitívne
0.0473
Slabo pozitívne
0.0641
Slabý negatívny
-0.0514
Answer 8-
Slabo pozitívne
0.0696
Slabo pozitívne
0.0850
Slabý negatívny
-0.0333
Slabo pozitívne
0.0150
Slabo pozitívne
0.0346
Slabo pozitívne
0.0134
Slabý negatívny
-0.1364
Answer 9-
Slabo pozitívne
0.0667
Slabo pozitívne
0.1676
Slabo pozitívne
0.0077
Slabo pozitívne
0.0694
Slabý negatívny
-0.0128
Slabý negatívny
-0.0517
Slabý negatívny
-0.1817
Answer 10-
Slabo pozitívne
0.0780
Slabo pozitívne
0.0754
Slabý negatívny
-0.0211
Slabo pozitívne
0.0249
Slabo pozitívne
0.0347
Slabý negatívny
-0.0132
Slabý negatívny
-0.1303
Answer 11-
Slabo pozitívne
0.0579
Slabo pozitívne
0.0528
Slabý negatívny
-0.0090
Slabo pozitívne
0.0083
Slabo pozitívne
0.0201
Slabo pozitívne
0.0308
Slabý negatívny
-0.1198
Answer 12-
Slabo pozitívne
0.0389
Slabo pozitívne
0.1036
Slabý negatívny
-0.0362
Slabo pozitívne
0.0359
Slabo pozitívne
0.0255
Slabo pozitívne
0.0297
Slabý negatívny
-0.1521
Answer 13-
Slabo pozitívne
0.0645
Slabo pozitívne
0.1041
Slabý negatívny
-0.0438
Slabo pozitívne
0.0262
Slabo pozitívne
0.0423
Slabo pozitívne
0.0174
Slabý negatívny
-0.1603
Answer 14-
Slabo pozitívne
0.0710
Slabo pozitívne
0.1022
Slabý negatívny
-0.0015
Slabý negatívny
-0.0085
Slabý negatívny
-0.0006
Slabo pozitívne
0.0087
Slabý negatívny
-0.1169
Answer 15-
Slabo pozitívne
0.0555
Slabo pozitívne
0.1365
Slabý negatívny
-0.0429
Slabo pozitívne
0.0179
Slabý negatívny
-0.0158
Slabo pozitívne
0.0223
Slabý negatívny
-0.1178
Answer 16-
Slabo pozitívne
0.0591
Slabo pozitívne
0.0271
Slabý negatívny
-0.0384
Slabý negatívny
-0.0401
Slabo pozitívne
0.0655
Slabo pozitívne
0.0283
Slabý negatívny
-0.0709


Export do MS Excel
Táto funkcia bude k dispozícii vo vašich vlastných anketách VUCA
V poriadku

You can not only just create your poll in the tarifa «V.U.C.A hlasovanie designer» (with a unique link and your logo) but also you can earn money by selling its results in the tarifa «Prieskum», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing tarifa «My SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Majiteľ produktu SaaS Pet Project Sdtest®

Valerii bol v roku 1993 kvalifikovaný ako sociálny pedagógový psychológ a odvtedy uplatňoval svoje znalosti v oblasti projektového riadenia.
Valerii získal magisterský titul a kvalifikáciu projektu a programového manažéra v roku 2013. Počas magisterského programu sa zoznámil s projektovým plánom (GPM Deutsche Gesellschaft Für Projektmanagement e. V.) a dynamikou špirály.
Valerii absolvoval rôzne testy špirálovej dynamiky a využil svoje vedomosti a skúsenosti na prispôsobenie súčasnej verzie SDTEST.
Valerii je autorom skúmania neistoty V.U.C.A. Koncept využívajúci špirálovú dynamiku a matematickú štatistiku v psychológii, viac ako 20 medzinárodných prieskumov prieskumov.
Tento príspevok má 0 Pripomienky
Odpovedať
Zrušiť odpoveď
Zanechajte svoj komentár
×
nájdete chybu
Navrhnúť vaše správnu verziu
Zadajte svoj e-mail, ako je požadované
send
Zrušiť
Bot
sdtest
1
Ahoj! Dovoľte mi, aby som sa vás opýtal, už ste oboznámení s dynamikou špirály?