Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Ettevõtete toimingud seoses personaliga viimasel kuul (jah / ei)

2) Ettevõtete tegevus seoses personali poolt viimase kuu jooksul (fakt%)

3) Kartma

4) Minu riigi suurimad probleemid

5) Milliseid omadusi ja võimeid kasutavad head juhid edukate meeskondade ehitamisel?

6) Google. Meeskonna efektiivsust mõjutavad tegurid

7) Tööotsijate peamised prioriteedid

8) Mis teeb ülemusest suurepärase juhi?

9) Mis teeb inimesed tööl edukaks?

10) Kas olete valmis eemalt töötamise eest vähem palka saama?

11) Kas ageism on olemas?

12) Ageism karjääris

13) Ageism elus

14) Ageismi põhjused

15) Põhjused, miks inimesed loobuvad (autor Anna Vital)

16) Usaldus (#WVS)

17) Oxfordi õnneuuring

18) Psühholoogiline heaolu

19) Kus oleks teie järgmine põnevam võimalus?

20) Mida teete sel nädalal oma vaimse tervise eest hoolitsemiseks?

21) Ma elan oma mineviku, oleviku või tuleviku peale

22) Meritokraatia

23) Tehisintellekt ja tsivilisatsiooni lõpp

24) Miks inimesed viivitavad?

25) Sooline erinevus enesekindluse loomisel (IFD Allensbach)

26) Xing.com kultuuri hindamine

27) Patrick Lencioni "meeskonna viis düsfunktsiooni"

28) Empaatia on ...

29) Mis on IT -spetsialistide jaoks hädavajalik tööpakkumise valimisel?

30) Miks inimesed muutustele vastu seisavad (autor Siobhán McHale)

31) Kuidas oma emotsioone reguleerida? (Autor: Nawal Mustafa M.A.)

32) 21 oskust, mis maksavad teile igavesti (autor Jeremiah Teo / 赵汉昇)

33) Tõeline vabadus on ...

34) 12 viisi teistega usalduse loomiseks (autor Justin Wright)

35) Andeka töötaja omadused (talentide juhtimise instituudi poolt)

36) 10 võtit oma meeskonna motiveerimiseks

37) Südametunnistuse algebra (Vladimir Lefebvre)

38) Kolm erinevat tulevikuvõimalust (autor. dr Clare W. Graves)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Kartma

Riik
keel
-
Mail
Ümber arvutama
Kriitiline väärtus korrelatsioonikordaja
Normaalne jaotus, autor William Sealy Gosset (õpilane) r = 0.033
Normaalne jaotus, autor William Sealy Gosset (õpilane) r = 0.033
Mitte normaalne jaotus, autor Spearman r = 0.0013
JaotusMitte
normaalne
Mitte
normaalne
Mitte
normaalne
NormaalneNormaalneNormaalneNormaalneNormaalne
Kõik küsimused
Kõik küsimused
Minu suurim hirm on
Minu suurim hirm on
Answer 1-
Nõrk positiivne
0.0569
Nõrk positiivne
0.0313
Nõrk negatiivne
-0.0161
Nõrk positiivne
0.0906
Nõrk positiivne
0.0297
Nõrk negatiivne
-0.0118
Nõrk negatiivne
-0.1544
Answer 2-
Nõrk positiivne
0.0225
Nõrk positiivne
0.0002
Nõrk negatiivne
-0.0450
Nõrk positiivne
0.0644
Nõrk positiivne
0.0442
Nõrk positiivne
0.0128
Nõrk negatiivne
-0.0940
Answer 3-
Nõrk negatiivne
-0.0030
Nõrk negatiivne
-0.0116
Nõrk negatiivne
-0.0411
Nõrk negatiivne
-0.0465
Nõrk positiivne
0.0466
Nõrk positiivne
0.0786
Nõrk negatiivne
-0.0200
Answer 4-
Nõrk positiivne
0.0440
Nõrk positiivne
0.0354
Nõrk negatiivne
-0.0189
Nõrk positiivne
0.0150
Nõrk positiivne
0.0299
Nõrk positiivne
0.0204
Nõrk negatiivne
-0.0986
Answer 5-
Nõrk positiivne
0.0309
Nõrk positiivne
0.1278
Nõrk positiivne
0.0137
Nõrk positiivne
0.0728
Nõrk negatiivne
-0.0011
Nõrk negatiivne
-0.0195
Nõrk negatiivne
-0.1757
Answer 6-
Nõrk negatiivne
-0.0001
Nõrk positiivne
0.0086
Nõrk negatiivne
-0.0623
Nõrk negatiivne
-0.0085
Nõrk positiivne
0.0193
Nõrk positiivne
0.0829
Nõrk negatiivne
-0.0319
Answer 7-
Nõrk positiivne
0.0127
Nõrk positiivne
0.0385
Nõrk negatiivne
-0.0683
Nõrk negatiivne
-0.0246
Nõrk positiivne
0.0468
Nõrk positiivne
0.0640
Nõrk negatiivne
-0.0519
Answer 8-
Nõrk positiivne
0.0700
Nõrk positiivne
0.0853
Nõrk negatiivne
-0.0322
Nõrk positiivne
0.0146
Nõrk positiivne
0.0344
Nõrk positiivne
0.0132
Nõrk negatiivne
-0.1370
Answer 9-
Nõrk positiivne
0.0670
Nõrk positiivne
0.1680
Nõrk positiivne
0.0087
Nõrk positiivne
0.0692
Nõrk negatiivne
-0.0132
Nõrk negatiivne
-0.0518
Nõrk negatiivne
-0.1822
Answer 10-
Nõrk positiivne
0.0784
Nõrk positiivne
0.0758
Nõrk negatiivne
-0.0199
Nõrk positiivne
0.0245
Nõrk positiivne
0.0342
Nõrk negatiivne
-0.0133
Nõrk negatiivne
-0.1308
Answer 11-
Nõrk positiivne
0.0586
Nõrk positiivne
0.0528
Nõrk negatiivne
-0.0091
Nõrk positiivne
0.0074
Nõrk positiivne
0.0198
Nõrk positiivne
0.0318
Nõrk negatiivne
-0.1198
Answer 12-
Nõrk positiivne
0.0392
Nõrk positiivne
0.1042
Nõrk negatiivne
-0.0353
Nõrk positiivne
0.0357
Nõrk positiivne
0.0249
Nõrk positiivne
0.0297
Nõrk negatiivne
-0.1526
Answer 13-
Nõrk positiivne
0.0646
Nõrk positiivne
0.1052
Nõrk negatiivne
-0.0444
Nõrk positiivne
0.0266
Nõrk positiivne
0.0416
Nõrk positiivne
0.0176
Nõrk negatiivne
-0.1605
Answer 14-
Nõrk positiivne
0.0714
Nõrk positiivne
0.1026
Nõrk negatiivne
-0.0002
Nõrk negatiivne
-0.0090
Nõrk negatiivne
-0.0012
Nõrk positiivne
0.0086
Nõrk negatiivne
-0.1174
Answer 15-
Nõrk positiivne
0.0558
Nõrk positiivne
0.1369
Nõrk negatiivne
-0.0419
Nõrk positiivne
0.0176
Nõrk negatiivne
-0.0163
Nõrk positiivne
0.0222
Nõrk negatiivne
-0.1183
Answer 16-
Nõrk positiivne
0.0592
Nõrk positiivne
0.0275
Nõrk negatiivne
-0.0384
Nõrk negatiivne
-0.0402
Nõrk positiivne
0.0652
Nõrk positiivne
0.0283
Nõrk negatiivne
-0.0710


Ekspordiks MS Excel
See funktsionaalsus on saadaval oma VUCA küsitlustes
Okei

You can not only just create your poll in the tariif «V.U.C.A küsitlus disainer» (with a unique link and your logo) but also you can earn money by selling its results in the tariif «Küsitluspoed», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing tariif «Minu SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Tooteomanik Saas PET -projekt SDTEST®

Valerii kvalifitseerus 1993. aastal sotsiaalse pedagoogi psühholoogiks ja on sellest ajast alates oma teadmisi projektijuhtimisel rakendanud.
Valerii omandas magistrikraadi ning projekti- ja programmijuhi kvalifikatsiooni 2013. aastal. Magistriprogrammi ajal sai ta tuttavaks projekti teekaardiga (GPM Deutsche Gesellschaft für projektmanagement e. V.) ja spiraaldünaamikaga.
Valerii tegi mitmesuguseid spiraalse dünaamika teste ja kasutas oma teadmisi ja kogemusi SDTesti praeguse versiooni kohandamiseks.
Valerii on V.U.C.A. ebakindluse uurimise autor. Mõiste, mis kasutab spiraalset dünaamikat ja matemaatilist statistikat psühholoogias, enam kui 20 rahvusvahelist küsitlust.
Sellel postitusel on 0 Kommentaarid
Vastama
Tühistage vastus
Jäta oma kommentaar
×
Leiate vea
Saada teateid oma õige versiooni
Sisesta oma e-posti soovitud
Saada
tühistama
Bot
sdtest
1
Tere! Las ma küsin teilt, kas olete juba spiraalse dünaamikaga tuttav?