τεστ με βάση το βιβλίο «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Χορηγός

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Ενέργειες εταιρειών σε σχέση με το προσωπικό τον τελευταίο μήνα (ναι / όχι)

2) Δράσεις εταιρειών σε σχέση με το προσωπικό τον τελευταίο μήνα (γεγονός σε%)

3) Φόβοι

4) Τα μεγαλύτερα προβλήματα που αντιμετωπίζουν η χώρα μου

5) Ποιες ιδιότητες και ικανότητες χρησιμοποιούν οι καλοί ηγέτες κατά την οικοδόμηση επιτυχημένων ομάδων;

6) Google. Παράγοντες που επηρεάζουν την αποτελεσματικότητα της ομάδας

7) Οι κύριες προτεραιότητες των αιτούντων εργασίας

8) Τι κάνει ένα αφεντικό ένας μεγάλος ηγέτης;

9) Τι κάνει τους ανθρώπους επιτυχημένους στη δουλειά;

10) Είστε έτοιμοι να λάβετε λιγότερη αμοιβή για να εργαστείτε εξ αποστάσεως;

11) Υπάρχει ο Ageism;

12) Ολισμός στην καριέρα

13) Ολισμός στη ζωή

14) Αιτίες ηλικίας

15) Λόγοι για τους οποίους οι άνθρωποι παραιτούνται (από την Άννα ζωτική)

16) ΕΜΠΙΣΤΟΣΥΝΗ (#WVS)

17) Έρευνα ευτυχίας της Οξφόρδης

18) Ψυχολογική ευημερία

19) Πού θα ήταν η επόμενη πιο συναρπαστική ευκαιρία;

20) Τι θα κάνετε αυτήν την εβδομάδα για να φροντίσετε την ψυχική σας υγεία;

21) Ζω να σκεφτώ το παρελθόν, το παρόν ή το μέλλον μου

22) Αξιοκρατία

23) Τεχνητή νοημοσύνη και το τέλος του πολιτισμού

24) Γιατί οι άνθρωποι χρονοτριβούν;

25) Διαφορά φύλου στην οικοδόμηση αυτοπεποίθησης (IFD Allensbach)

26) Xing.com Αξιολόγηση πολιτισμού

27) Οι πέντε δυσλειτουργίες μιας ομάδας του Patrick Lencioni

28) Η ενσυναίσθηση είναι ...

29) Τι είναι απαραίτητο για τους ειδικούς πληροφορικής στην επιλογή μιας προσφοράς εργασίας;

30) Γιατί οι άνθρωποι αντιστέκονται στην αλλαγή (από το Siobhán McHale)

31) Πώς ρυθμίζετε τα συναισθήματά σας; (από τον Nawal Mustafa M.A.)

32) 21 δεξιότητες που σας πληρώνουν για πάντα (από τον Jeremiah Teo / 赵汉昇)

33) Η πραγματική ελευθερία είναι ...

34) 12 τρόποι για να οικοδομήσουμε εμπιστοσύνη με άλλους (από τον Justin Wright)

35) Χαρακτηριστικά ενός ταλαντούχου υπαλλήλου (από το Ινστιτούτο Διαχείρισης Ταλέντων)

36) 10 κλειδιά για την παρακίνηση της ομάδας σας

37) Άλγεβρα της συνείδησης (του Βλαντιμίρ Λεφέβρ)

38) Τρεις διακριτές δυνατότητες του μέλλοντος (από τον Δρ. Clare W. Graves)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Φόβοι

Χώρα
Γλώσσα
-
Mail
Υπολογίζω εκ νέου
Κρίσιμη τιμή του συντελεστή συσχέτισης
Κανονική διανομή, από τον William Sealy Gosset (φοιτητής) r = 0.033
Κανονική διανομή, από τον William Sealy Gosset (φοιτητής) r = 0.033
Μη κανονική κατανομή, από τον Spearman r = 0.0013
ΔιανομήΜη
φυσιολογικός
Μη
φυσιολογικός
Μη
φυσιολογικός
ΚανονικόςΚανονικόςΚανονικόςΚανονικόςΚανονικός
Όλες οι ερωτήσεις
Όλες οι ερωτήσεις
Ο μεγαλύτερος φόβος μου είναι
Ο μεγαλύτερος φόβος μου είναι
Answer 1-
Αδύνατο θετικό
0.0561
Αδύνατο θετικό
0.0315
Αδύνατο αρνητικό
-0.0169
Αδύνατο θετικό
0.0917
Αδύνατο θετικό
0.0303
Αδύνατο αρνητικό
-0.0128
Αδύνατο αρνητικό
-0.1543
Answer 2-
Αδύνατο θετικό
0.0228
Αδύνατο αρνητικό
-0.0011
Αδύνατο αρνητικό
-0.0438
Αδύνατο θετικό
0.0629
Αδύνατο θετικό
0.0452
Αδύνατο θετικό
0.0137
Αδύνατο αρνητικό
-0.0944
Answer 3-
Αδύνατο αρνητικό
-0.0032
Αδύνατο αρνητικό
-0.0123
Αδύνατο αρνητικό
-0.0403
Αδύνατο αρνητικό
-0.0469
Αδύνατο θετικό
0.0469
Αδύνατο θετικό
0.0787
Αδύνατο αρνητικό
-0.0199
Answer 4-
Αδύνατο θετικό
0.0439
Αδύνατο θετικό
0.0341
Αδύνατο αρνητικό
-0.0196
Αδύνατο θετικό
0.0146
Αδύνατο θετικό
0.0309
Αδύνατο θετικό
0.0207
Αδύνατο αρνητικό
-0.0977
Answer 5-
Αδύνατο θετικό
0.0297
Αδύνατο θετικό
0.1278
Αδύνατο θετικό
0.0132
Αδύνατο θετικό
0.0737
Αδύνατο αρνητικό
-0.0002
Αδύνατο αρνητικό
-0.0211
Αδύνατο αρνητικό
-0.1752
Answer 6-
Αδύνατο αρνητικό
-0.0009
Αδύνατο θετικό
0.0074
Αδύνατο αρνητικό
-0.0626
Αδύνατο αρνητικό
-0.0081
Αδύνατο θετικό
0.0193
Αδύνατο θετικό
0.0835
Αδύνατο αρνητικό
-0.0310
Answer 7-
Αδύνατο θετικό
0.0125
Αδύνατο θετικό
0.0377
Αδύνατο αρνητικό
-0.0696
Αδύνατο αρνητικό
-0.0240
Αδύνατο θετικό
0.0472
Αδύνατο θετικό
0.0648
Αδύνατο αρνητικό
-0.0514
Answer 8-
Αδύνατο θετικό
0.0696
Αδύνατο θετικό
0.0850
Αδύνατο αρνητικό
-0.0323
Αδύνατο θετικό
0.0143
Αδύνατο θετικό
0.0345
Αδύνατο θετικό
0.0135
Αδύνατο αρνητικό
-0.1365
Answer 9-
Αδύνατο θετικό
0.0671
Αδύνατο θετικό
0.1683
Αδύνατο θετικό
0.0092
Αδύνατο θετικό
0.0682
Αδύνατο αρνητικό
-0.0131
Αδύνατο αρνητικό
-0.0519
Αδύνατο αρνητικό
-0.1820
Answer 10-
Αδύνατο θετικό
0.0786
Αδύνατο θετικό
0.0753
Αδύνατο αρνητικό
-0.0216
Αδύνατο θετικό
0.0243
Αδύνατο θετικό
0.0348
Αδύνατο αρνητικό
-0.0130
Αδύνατο αρνητικό
-0.1297
Answer 11-
Αδύνατο θετικό
0.0584
Αδύνατο θετικό
0.0526
Αδύνατο αρνητικό
-0.0095
Αδύνατο θετικό
0.0078
Αδύνατο θετικό
0.0203
Αδύνατο θετικό
0.0310
Αδύνατο αρνητικό
-0.1195
Answer 12-
Αδύνατο θετικό
0.0392
Αδύνατο θετικό
0.1038
Αδύνατο αρνητικό
-0.0356
Αδύνατο θετικό
0.0350
Αδύνατο θετικό
0.0254
Αδύνατο θετικό
0.0296
Αδύνατο αρνητικό
-0.1517
Answer 13-
Αδύνατο θετικό
0.0647
Αδύνατο θετικό
0.1042
Αδύνατο αρνητικό
-0.0435
Αδύνατο θετικό
0.0255
Αδύνατο θετικό
0.0422
Αδύνατο θετικό
0.0173
Αδύνατο αρνητικό
-0.1598
Answer 14-
Αδύνατο θετικό
0.0713
Αδύνατο θετικό
0.1028
Αδύνατο αρνητικό
-0.0004
Αδύνατο αρνητικό
-0.0097
Αδύνατο αρνητικό
-0.0009
Αδύνατο θετικό
0.0085
Αδύνατο αρνητικό
-0.1169
Answer 15-
Αδύνατο θετικό
0.0550
Αδύνατο θετικό
0.1365
Αδύνατο αρνητικό
-0.0435
Αδύνατο θετικό
0.0184
Αδύνατο αρνητικό
-0.0155
Αδύνατο θετικό
0.0213
Αδύνατο αρνητικό
-0.1170
Answer 16-
Αδύνατο θετικό
0.0592
Αδύνατο θετικό
0.0270
Αδύνατο αρνητικό
-0.0383
Αδύνατο αρνητικό
-0.0404
Αδύνατο θετικό
0.0655
Αδύνατο θετικό
0.0282
Αδύνατο αρνητικό
-0.0706


Εξαγωγή στο MS Excel
Αυτή η λειτουργικότητα θα είναι διαθέσιμη στις δικές σας δημοσκοπήσεις VUCA
Εντάξει

You can not only just create your poll in the Δασμολόγιο «V.U.C.A σχεδιαστής δημοσκόπηση» (with a unique link and your logo) but also you can earn money by selling its results in the Δασμολόγιο «Ψήφοι», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Δασμολόγιο «Μου SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Βαλέριι Κοσένκο
Ιδιοκτήτης προϊόντος SaaS PET Project SDTest®

Ο Valerii χαρακτηρίστηκε ως κοινωνικός παιδαγωγός-ψυχολόγος το 1993 και από τότε έχει εφαρμόσει τις γνώσεις του στη διαχείριση του έργου.
Ο Valerii έλαβε μεταπτυχιακό δίπλωμα και το Project and Program Manager Conformation το 2013. Κατά τη διάρκεια του προγράμματος του μεταπτυχιακού του, εξοικειώθηκε με τον χάρτη πορείας του έργου (GPM Deutsche Gesellschaft Für ProjektManagement e. V.) και η Spiral Dynamics.
Ο Valerii πήρε διάφορες δοκιμασίες σπειροειδούς δυναμικής και χρησιμοποίησε τις γνώσεις και την εμπειρία του για να προσαρμόσει την τρέχουσα έκδοση του SDTest.
Ο Valerii είναι ο συγγραφέας της εξερεύνησης της αβεβαιότητας του V.U.C.A. Έννοια που χρησιμοποιεί τη σπειροειδής δυναμική και τα μαθηματικά στατιστικά στοιχεία στην ψυχολογία, περισσότερες από 20 διεθνείς δημοσκοπήσεις.
Αυτή η ανάρτηση έχει 0 Σχόλια
Να απαντήσουν σε
Ακυρώστε μια απάντηση
Αφήστε το σχόλιό σας
×
Βρείτε κάποιο λάθος
ΠΡΟΤΕΙΝΟΥΝ σωστή έκδοση ΣΑΣ
Συμπληρώστε το e-mail σας όπως επιθυμείτε
Στείλετε
Ματαίωση
Bot
sdtest
1
Γεια σου! Επιτρέψτε μου να σας ρωτήσω, ήδη εξοικειωθείτε με τη δυναμική της σπειροειδούς;