књига басед тест «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Спонзори

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Радње предузећа у вези са особљем у последњем мјесецу (да / не)

2) Радње предузећа у односу на особље у последњем мјесецу (чињеница у%)

3) Страхови

4) Највећи проблеми са којима се суочавају моја земља

5) Које квалитете и способности користе добри лидери користе се приликом изградње успешних тимова?

6) Гоогле. Фактори који утичу на ефикасност тима

7) Главни приоритети тражилаца посла

8) Шта шефа чини сјајном вођом?

9) Шта људи чини успешним на послу?

10) Да ли сте спремни да даљите мање платите да даљински радите?

11) Да ли агеизам постоји?

12) Агеизам у каријери

13) Агеизам у животу

14) Узроци агеризма

15) Разлози због којих људи одустају (Анна Витал)

16) Поверење (#WVS)

17) Окфорд Хаппинесс Анкета

18) Психолошко благостање

19) Где би била ваша следећа најузбудљивија прилика?

20) Шта ћете радити ове недеље да бисте се бринули на ментално здравље?

21) Живим размишљајући о својој прошлости, садашњем или будућности

22) Меритократија

23) Вештачка интелигенција и крај цивилизације

24) Зашто људи одлажу?

25) Родна разлика у изградњи самопоуздања (ИФД Алансбацх)

26) Xing.com Процена културе

27) Патрицк Ленциони'с "Пет дисфункција тима"

28) Емпатија је ...

29) Шта је неопходно за ИТ стручњаке у избору понуде за посао?

30) Зашто се људи одупиру променама (од Сиобхан Мцхале)

31) Како регулишете своје емоције? (од Навал Мустафа М.А.)

32) 21 Вештине које вам плаћају заувек (од јеремиах тео / 赵汉昇)

33) Права слобода је ...

34) 12 начина за изградњу поверења са другима (Јустин Вригхт)

35) Карактеристике талентованог радника (од стране Института за управљање талентовима)

36) 10 тастера за мотивисање вашег тима

37) Алгебра савести (Владимир Лефевр)

38) Три различите могућности будућности (др. Цларе В. Гравес)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Страхови

земља
Језик
-
Mail
Прерадити
Критична вредност коефицијента корелације
Нормална дистрибуција, Виллиам Сеали Госсет (Студент) r = 0.033
Нормална дистрибуција, Виллиам Сеали Госсет (Студент) r = 0.033
Нон нормална дистрибуција, од стране Спеарман-а r = 0.0013
ДистрибуцијаНе
нормално
Не
нормално
Не
нормално
НормаланНормаланНормаланНормаланНормалан
Сва питања
Сва питања
Мој највећи страх је
Мој највећи страх је
Answer 1-
Слабо позитивно
0.0558
Слабо позитивно
0.0311
Слаб негативан
-0.0169
Слабо позитивно
0.0917
Слабо позитивно
0.0304
Слаб негативан
-0.0128
Слаб негативан
-0.1541
Answer 2-
Слабо позитивно
0.0229
Слаб негативан
-0.0006
Слаб негативан
-0.0443
Слабо позитивно
0.0632
Слабо позитивно
0.0453
Слабо позитивно
0.0130
Слаб негативан
-0.0942
Answer 3-
Слаб негативан
-0.0032
Слаб негативан
-0.0122
Слаб негативан
-0.0413
Слаб негативан
-0.0464
Слабо позитивно
0.0469
Слабо позитивно
0.0786
Слаб негативан
-0.0196
Answer 4-
Слабо позитивно
0.0437
Слабо позитивно
0.0345
Слаб негативан
-0.0196
Слабо позитивно
0.0152
Слабо позитивно
0.0307
Слабо позитивно
0.0204
Слаб негативан
-0.0981
Answer 5-
Слабо позитивно
0.0303
Слабо позитивно
0.1280
Слабо позитивно
0.0134
Слабо позитивно
0.0733
Слаб негативан
-0.0005
Слаб негативан
-0.0203
Слаб негативан
-0.1759
Answer 6-
Слаб негативан
-0.0003
Слабо позитивно
0.0082
Слаб негативан
-0.0630
Слаб негативан
-0.0082
Слабо позитивно
0.0195
Слабо позитивно
0.0830
Слаб негативан
-0.0315
Answer 7-
Слабо позитивно
0.0124
Слабо позитивно
0.0382
Слаб негативан
-0.0694
Слаб негативан
-0.0241
Слабо позитивно
0.0473
Слабо позитивно
0.0641
Слаб негативан
-0.0514
Answer 8-
Слабо позитивно
0.0696
Слабо позитивно
0.0850
Слаб негативан
-0.0333
Слабо позитивно
0.0150
Слабо позитивно
0.0346
Слабо позитивно
0.0134
Слаб негативан
-0.1364
Answer 9-
Слабо позитивно
0.0667
Слабо позитивно
0.1676
Слабо позитивно
0.0077
Слабо позитивно
0.0694
Слаб негативан
-0.0128
Слаб негативан
-0.0517
Слаб негативан
-0.1817
Answer 10-
Слабо позитивно
0.0780
Слабо позитивно
0.0754
Слаб негативан
-0.0211
Слабо позитивно
0.0249
Слабо позитивно
0.0347
Слаб негативан
-0.0132
Слаб негативан
-0.1303
Answer 11-
Слабо позитивно
0.0579
Слабо позитивно
0.0528
Слаб негативан
-0.0090
Слабо позитивно
0.0083
Слабо позитивно
0.0201
Слабо позитивно
0.0308
Слаб негативан
-0.1198
Answer 12-
Слабо позитивно
0.0389
Слабо позитивно
0.1036
Слаб негативан
-0.0362
Слабо позитивно
0.0359
Слабо позитивно
0.0255
Слабо позитивно
0.0297
Слаб негативан
-0.1521
Answer 13-
Слабо позитивно
0.0645
Слабо позитивно
0.1041
Слаб негативан
-0.0438
Слабо позитивно
0.0262
Слабо позитивно
0.0423
Слабо позитивно
0.0174
Слаб негативан
-0.1603
Answer 14-
Слабо позитивно
0.0710
Слабо позитивно
0.1022
Слаб негативан
-0.0015
Слаб негативан
-0.0085
Слаб негативан
-0.0006
Слабо позитивно
0.0087
Слаб негативан
-0.1169
Answer 15-
Слабо позитивно
0.0555
Слабо позитивно
0.1365
Слаб негативан
-0.0429
Слабо позитивно
0.0179
Слаб негативан
-0.0158
Слабо позитивно
0.0223
Слаб негативан
-0.1178
Answer 16-
Слабо позитивно
0.0591
Слабо позитивно
0.0271
Слаб негативан
-0.0384
Слаб негативан
-0.0401
Слабо позитивно
0.0655
Слабо позитивно
0.0283
Слаб негативан
-0.0709


Извоз у МС Екцел
Ова функционалност ће бити доступна у сопственим анкетама VUCA
У реду

You can not only just create your poll in the тарифа «V.U.C.A анкета дизајнер» (with a unique link and your logo) but also you can earn money by selling its results in the тарифа «Продавница анкете», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing тарифа «Мој SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Валерий Косенко
Власник производа СААС ПЕТ Пројецт СДТЕСТ®

Валерии је био квалификован као социјални педагошки психолог 1993. године и од тада је применио своје знање у управљању пројектима.
Валерии је стекао магистарство и квалификацију пројекта и програма менаџера у 2013. Током свог мастер програма, постао је упознат са пројектним путем (ГПМ Деутсцхе Геселлсцхафт фур пројектанагемент е. В.) и спирална динамика.
Валерии је узео разне спиралне динамичке тестове и искористио своје знање и искуство да би прилагодио тренутну верзију СДТЕСТ-а.
Валерии је аутор истраживања неизвесности В.У.ц.а. Концепт користећи спиралну динамику и математичку статистику у психологији, више од 20 међународних анкета.
Овај пост има 0 Коментари
Одговарати на
Отказати одговор
Оставите свој коментар
×
Пронађете ГРЕШКА
ПРОПОСЕ ИОУР исправну верзију
Унесите своју е-маил по жељи
Пошаљите
Поништити, отказати
Bot
sdtest
1
Здраво! Дозволите да вас питам, да ли сте већ упознати са спиралном динамиком?