Grāmata balstīta tests «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Sponsors

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Uzņēmumu darbības saistībā ar personālu pēdējā mēneša laikā (jā / nē)

2) Uzņēmumu darbības attiecībā uz personālu pēdējā mēneša laikā (fakts%)

3) Bailes

4) Lielākās problēmas, ar kurām saskaras mana valsts

5) Kādas īpašības un spējas labas vadītājus izmanto, veidojot veiksmīgas komandas?

6) Google. Faktori, kas ietekmē komandas efektivitāti

7) Galvenās darba meklētāju prioritātes

8) Kas padara priekšnieku par lielisku vadītāju?

9) Kas padara cilvēkus par veiksmīgiem darbā?

10) Vai esat gatavs saņemt mazāk atalgojuma par darbu attālināti?

11) Vai vecums pastāv?

12) Ageisms karjerā

13) Vecums dzīvē

14) Agisma cēloņi

15) Iemesli, kāpēc cilvēki atsakās (Anna Vital)

16) Uzticība (#WVS)

17) Oksfordas laimes aptauja

18) Psiholoģiskā labklājība

19) Kur būtu jūsu nākamā aizraujošākā iespēja?

20) Ko jūs darīsit šonedēļ, lai rūpētos par savu garīgo veselību?

21) Es dzīvoju, domājot par savu pagātni, tagadni vai nākotni

22) Meritokrātija

23) Mākslīgais intelekts un civilizācijas beigas

24) Kāpēc cilvēki kavējas?

25) Dzimumu atšķirība pašpārliecinātības veidošanā (ifd allensbach)

26) Xing.com kultūras novērtējums

27) Patrika Lencioni "Piecas komandas disfunkcijas"

28) Empātija ir ...

29) Kas ir svarīgi IT speciālistiem, izvēloties darba piedāvājumu?

30) Kāpēc cilvēki pretojas pārmaiņām (autors Siobhán McHale)

31) Kā jūs regulējat savas emocijas? (autors Nawal Mustafa M.A.)

32) 21 prasmes, kas jums maksā mūžīgi (Jeremiah Teo / 赵汉昇)

33) Īsta brīvība ir ...

34) 12 veidi, kā veidot uzticību citiem (autors Džastins Raits)

35) Talantīga darbinieka raksturojums (autors talantu vadības institūts)

36) 10 atslēgas jūsu komandas motivēšanai

37) Sirdsapziņas algebra (Vladimirs Lefevrs)

38) Trīs atšķirīgas nākotnes iespējas (autors. Dr. Clare W. Graves)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Bailes

valsts
valoda
-
Mail
Pārrēķināt
Kritiskais vērtību korelācijas koeficienta
Normāla izplatīšana, autors Viljams Sealijs Gossets (students) r = 0.033
Normāla izplatīšana, autors Viljams Sealijs Gossets (students) r = 0.033
Non parasts sadalījums, autors Spearman r = 0.0013
SadalījumsNenormālsNenormālsNenormālsNormālsNormālsNormālsNormālsNormāls
Visi jautājumi
Visi jautājumi
Mana lielākā bailes ir
Mana lielākā bailes ir
Answer 1-
Vāji pozitīvi
0.0569
Vāji pozitīvi
0.0313
Vāja negatīva
-0.0161
Vāji pozitīvi
0.0906
Vāji pozitīvi
0.0297
Vāja negatīva
-0.0118
Vāja negatīva
-0.1544
Answer 2-
Vāji pozitīvi
0.0225
Vāji pozitīvi
0.0002
Vāja negatīva
-0.0450
Vāji pozitīvi
0.0644
Vāji pozitīvi
0.0442
Vāji pozitīvi
0.0128
Vāja negatīva
-0.0940
Answer 3-
Vāja negatīva
-0.0030
Vāja negatīva
-0.0116
Vāja negatīva
-0.0411
Vāja negatīva
-0.0465
Vāji pozitīvi
0.0466
Vāji pozitīvi
0.0786
Vāja negatīva
-0.0200
Answer 4-
Vāji pozitīvi
0.0440
Vāji pozitīvi
0.0354
Vāja negatīva
-0.0189
Vāji pozitīvi
0.0150
Vāji pozitīvi
0.0299
Vāji pozitīvi
0.0204
Vāja negatīva
-0.0986
Answer 5-
Vāji pozitīvi
0.0309
Vāji pozitīvi
0.1278
Vāji pozitīvi
0.0137
Vāji pozitīvi
0.0728
Vāja negatīva
-0.0011
Vāja negatīva
-0.0195
Vāja negatīva
-0.1757
Answer 6-
Vāja negatīva
-0.0001
Vāji pozitīvi
0.0086
Vāja negatīva
-0.0623
Vāja negatīva
-0.0085
Vāji pozitīvi
0.0193
Vāji pozitīvi
0.0829
Vāja negatīva
-0.0319
Answer 7-
Vāji pozitīvi
0.0127
Vāji pozitīvi
0.0385
Vāja negatīva
-0.0683
Vāja negatīva
-0.0246
Vāji pozitīvi
0.0468
Vāji pozitīvi
0.0640
Vāja negatīva
-0.0519
Answer 8-
Vāji pozitīvi
0.0700
Vāji pozitīvi
0.0853
Vāja negatīva
-0.0322
Vāji pozitīvi
0.0146
Vāji pozitīvi
0.0344
Vāji pozitīvi
0.0132
Vāja negatīva
-0.1370
Answer 9-
Vāji pozitīvi
0.0670
Vāji pozitīvi
0.1680
Vāji pozitīvi
0.0087
Vāji pozitīvi
0.0692
Vāja negatīva
-0.0132
Vāja negatīva
-0.0518
Vāja negatīva
-0.1822
Answer 10-
Vāji pozitīvi
0.0784
Vāji pozitīvi
0.0758
Vāja negatīva
-0.0199
Vāji pozitīvi
0.0245
Vāji pozitīvi
0.0342
Vāja negatīva
-0.0133
Vāja negatīva
-0.1308
Answer 11-
Vāji pozitīvi
0.0586
Vāji pozitīvi
0.0528
Vāja negatīva
-0.0091
Vāji pozitīvi
0.0074
Vāji pozitīvi
0.0198
Vāji pozitīvi
0.0318
Vāja negatīva
-0.1198
Answer 12-
Vāji pozitīvi
0.0392
Vāji pozitīvi
0.1042
Vāja negatīva
-0.0353
Vāji pozitīvi
0.0357
Vāji pozitīvi
0.0249
Vāji pozitīvi
0.0297
Vāja negatīva
-0.1526
Answer 13-
Vāji pozitīvi
0.0646
Vāji pozitīvi
0.1052
Vāja negatīva
-0.0444
Vāji pozitīvi
0.0266
Vāji pozitīvi
0.0416
Vāji pozitīvi
0.0176
Vāja negatīva
-0.1605
Answer 14-
Vāji pozitīvi
0.0714
Vāji pozitīvi
0.1026
Vāja negatīva
-0.0002
Vāja negatīva
-0.0090
Vāja negatīva
-0.0012
Vāji pozitīvi
0.0086
Vāja negatīva
-0.1174
Answer 15-
Vāji pozitīvi
0.0558
Vāji pozitīvi
0.1369
Vāja negatīva
-0.0419
Vāji pozitīvi
0.0176
Vāja negatīva
-0.0163
Vāji pozitīvi
0.0222
Vāja negatīva
-0.1183
Answer 16-
Vāji pozitīvi
0.0592
Vāji pozitīvi
0.0275
Vāja negatīva
-0.0384
Vāja negatīva
-0.0402
Vāji pozitīvi
0.0652
Vāji pozitīvi
0.0283
Vāja negatīva
-0.0710


Eksportēt uz MS Excel
Šī funkcija būs pieejama jūsu VUCA aptaujās
Labi

You can not only just create your poll in the tarifs «V.U.C.A aptauja dizainers» (with a unique link and your logo) but also you can earn money by selling its results in the tarifs «Aptaujas veikals», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing tarifs «Mans SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Produkta īpašnieks SaaS Pet Project SDTest®

Valerii tika kvalificēts kā sociālais pedagogu psihologs 1993. gadā un kopš tā laika ir izmantojis savas zināšanas projektu vadībā.
Valerii ieguva maģistra grādu un projekta un programmas vadītāja kvalifikāciju 2013. gadā. Viņa maģistra programmas laikā viņš iepazinās ar projekta ceļvedi (GPM Deutsche Gesellschaft Für Projektmanagement E. V.) un spirāles dinamika.
Valerii veica dažādus spirāles dinamikas testus un izmantoja savas zināšanas un pieredzi, lai pielāgotu pašreizējo Sdtest versiju.
Valerii ir autors, lai izpētītu V.U.C.A. nenoteiktību. Koncepcija, izmantojot spirāles dinamiku un matemātisko statistiku psiholoģijā, vairāk nekā 20 starptautiskas aptaujas.
Šim amatam ir 0 Komentāri
Atbildēt uz
Atcelt atbildi
Atstājiet savu komentāru
×
Atrodat kļūdu
Informējiet par pareizo versiju
Ievadiet savu e-pasta adresi, kā vēlamo
Sūtīt
atcelt
Bot
sdtest
1
Sveiki! Ļaujiet man jums jautāt, vai jūs jau esat pazīstams ar spirāles dinamiku?